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Abstract

A conjecture of Padmanabhan, on provability in cancellative semigroups,
is addressed. Several of Levi’s group theory commutator theorems are
proved for cancellative semigroups. The proofs, found by automated de-
duction, support the conjecture.
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1 Introduction

The following conjecture (apparently still open) was formulated by the first
author in the 1980s and published in [4].

Conjecture. Let Σ be a nonempty set of equations of type 〈2〉, and let σ
be an equation of the same type. If every group satisfying Σ also satisfies σ,
then every cancellative semigroup satisfying Σ must satisfy σ as well. To put
it more formally, let GT be the axioms of group theory and CS be the axioms
for cancellative semigroups, that is, the associative law and the two cancellation
laws. Then

if (Σ,GT ⇒ σ), then (Σ,CS ⇒ σ).

From the deductive point of view, this conjecture says that if one uses the richer
language of group theory (i.e., with inverse and identity) to derive σ from Σ,
then one can do the same thing within the limited language of just one binary
operation that is associative and cancellative.

For example, the statement

xyzyx = yxzxy ⇒ xyyx = yxxy.
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supports the conjecture. It satisfies the conditions of the conjecture, it has a
proof in GT (trivial, by letting z be the identity), and the following proof shows
it to hold for CS.

(xyyx)(xyx) = (xy)(yxx)(yx)
= (yx)(yxx)(xy) [by the assumed identity with z = xyx]
= (yx)(yx)x(xy)
= (yx)(xy)x(yx) [by the assumed identity with z = x]
= (yxxy)(xyx)

xyyx = yxxy [by canceling (xyx)] �

Unfortunately, the proof in GT does not seem to tell us much about how to
prove it in CS. Many such examples supporting the conjecture can be found in
[4].

Here we do not directly address the conjecture; rather, we provide further in-
tuitive support for it by considering several theorems about commutators in GT
and the corresponding statements in CS. Automated theorem proving was used
to find proofs for the GT and the CS theorems. Apart from being generaliza-
tions, these proofs are strictly first order (e.g., avoiding quotient constructions)
and hence may be construed as providing new equational proofs of the well
known theorems in GT.

2 Commutator Theorems in GT and in CS

In GT, let the commutator operation be defined as

[x, y] = x−1y−1xy. (C1)

The following three statements about commutators,

[x, y]z = z[x, y] (nilpotency of class 2) (N)
[[x, y], z] = [u, [v, w]] (“associativity” of commutator) (A)

[xy, z] = [x, z][y, z] (distributivity), (D)

are well known to be equivalent in GT [1, p. 99]. We refer to this fact as Levi’s
theorem on commutators. See the Web page [5] for equational proofs found by
a theorem-proving program.

Consider the analogous problem in CS. We cannot use (C1) to define the
commutator because the inverse operation is not in the language. Instead, we
simply state the following property of the new operation:

yx[x, y] = xy. (C2)

Indeed, such an element [x, y] is unique by the cancellation law.
In the following section, we show informally that given (C2), the equations

(N), (A), and (D) are equivalent in CS. In group theory, these three properties
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are equivalent to the group being nilpotent of class 2. This is the essence of
Levi’s theorem on commutators. Thus, to capture the full scenario of Levi, we
need to define the concept of nilpotence class 2 in a manner meaningful in CS,
that is, with no mention of the inverse operation. This is precisely the role
played by the identity

xyzyx = yxzxy. (CS essence of (N)) (E)

This was first discovered by A. I. Malcev in [2]. In fact, he proved that any
cancellative semigroup satisfying the property (E) is embeddable in a group of
nilpotence class 2.

Note that these equations are outside the hypotheses of the conjecture on
cancellative semigroups. First, there is an additional operation. Second, the CS
versions use property (C2) instead of the definition (C1), giving slightly stronger
theorems (which hold obviously for GT as well). Also, if a cancellative semi-
group satisfies (C2), there is a left and right identity element for the semigroup
operation (see Section 4), which allows the CS proofs to be a bit more grouplike.

3 Proof Sketch

By Malcev’s discovery, the class of all cancellative semigroups satisfying (E) is
identical to the class of all subsemigroups of nilpotent groups of class 2. Com-
bining this with the proofs given by Kurosh of Levi’s theorems on commutators
[1, p. 91], we have a model-theoretic proof that property (E) is equivalent to
(N), (A), and (D) in the class of all cancellative semigroups.

By the completeness theorem of first-order logic with equality, there must
be proofs of this equivalence within the first-order theory of CS. The automated
theorem-proving program Otter [3] has found such proofs, and we show one of
the longer proofs in the following section. The other Otter proofs showing all of
the equivalences can be found on the Web page associated with this paper [5].

4 Computer Proof of (E) ⇒ (D)

Here we give a formal equational proof that property (E) implies the distribu-
tivity property (D) in CS. The proof was found by Otter. (Notes on the proofs
are given below.) First, Otter shows the existence of a constant [x, x].

2 x = x []
3 xy = z, xu = z → y = u [left cancellation]
4 xy = z, uy = z → x = u [right cancellation]
5 (xy)z = xyz [associativity of ·]
7 xy[y, x] = yx [commutator property]

11 x[x, x] = x [3,2,7]
21 x[x, x]y = xy [11 → 5]
31 [x, x]y = y [3,2,21]
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33 [x, x] = [y, y] [4,31,31]

Now Otter proves that (E) ⇒ (D) in CS.

2 x = x []
3 xy = z, xu = z → y = u [left cancellation]
4 xy = z, uy = z → x = u [right cancellation]
5 (xy)z = xyz [associativity of .]
7 xy[y, x] = yx [commutator property]
10 xyzyx = yxzxy [property (E)]
11 [x, x] = e [constant e]

15 xe = x [3,2,7:11]
17 xyz[yz, x] = yzx [5 → 7:5]
19 xyz[z, xy] = zxy [5 → 7]
21 xy[y, x]z = yxz [7 → 5:5,5]
24 xey = xy [15 → 5]
30 xy[xy, x] = yx [3,2,17]
36 ex = x [3,7,24:11,15]
39 xy[y, yx] = yx [3,2,19]
44 x[x, e] = x [3,7,36:15]
49 x[e, x] = x [36 → 7:36]
51 [x, e] = e [3,15,44]
56 xyxz = x[x, z]yzx [3,10,21]
57 x[x, y]z = zx[x, yz] [3,21,19]
63 [x, y]yx = xy[[x, y], yx] [19 → 21]
65 [e, x] = e [3,15,49]
67 x[yx, y] = x[x, y] [3,7,30]
75 x[x, xy] = x[x, y] [3,7,39]
77 [xy, x] = [y, x] [3,2,67]
89 [xyz, xy] = [z, xy] [5 → 77]
91 [x, xy] = [x, y] [3,2,75]
111 [xy, xyz] = [xy, z] [5 → 91]
151 [xy, yx] = [[x, y], yx] [7 → 89]
156 [x, y]zyx = zxy [3,2,56]
157 xyz = [y, z]xzy [3,56,2]
158 [x, [x, y]zyx] = [x, zxy] [56 → 91:91]
160 [x, yxz] = [x, [x, z]yzx] [158]
167 [[x, y], yx] = [xy, [y, x]] [7 → 111:151]
169 [xy, [y, x]] = [[x, y], yx] [167]
170 x[x, y][y, zx] = [y, z]x [3,21,57]
180 xy[[x, y], yx] = xy [3,2,156:63]
182 [x, y]yx = xy [63:180]
196 [[x, y], zxy] = [[x, y], zyx] [156 → 91]
210 [x, yz]yzx = xyz [5 → 182]
225 [xy, [x, y]] = [yx, [x, y]] [182 → 77]
226 [x, y]yxz = xyz [182 → 5:5,5]
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229 [xy, [y, x]] = [yx, [y, x]] [225]
280 xy[[x, y], zyx] = xy [3,19,157:5,21]
286 [x, yz]zyx = xzy [156 → 157:5,226]
384 x[[y, x], xy] = x [3,2,180]
387 [[x, y], yx] = e [3,15,384]
391 [xy, [y, x]] = e [169:387]
399 [xy, [x, y]] = e [229:391]
1669 [x, y][y, zx] = [y, z][[y, z], x] [3,170,7]
1670 x[x, y][y, x] = x [36 → 170:51,36]
1755 [x, y][y, x] = e [3,15,1670]
1797 [x, y][y, x]z = z [1755 → 17:65,15,1755,15]
1998 [[x, y], z][y, x]z[x, y] = z [157 → 1797]
2689 [[x, y], z]xy = xy [196 → 170:399,36,5,280]
3280 [x, yz] = [x, zy] [4,210,286]
3373 [x, [y, z]uzy] = [x, yzu] [157 → 3280:5]
3428 [x, yxz] = [x, zy] [160:3373,91]
3429 [x, yz] = [x, zxy] [158:3373,91]
5622 [[x, y], z] = e [4,36,2689]
5644 [x, y]z[y, x] = z [1998:5622,36]
5646 [x, y][y, zx] = [y, z] [1669:5622,15]
5968 [x, yxz] = [x, yz] [3428 → 3429:5,91]
6186 [x, y][x, z] = [x, yz] [3,5644,5646]
6243 [x, yz][z, yx] = [xz, y] [89 → 5646:5968,77]
6516 [x, yz]u = [x, y][x, z]u [6186 → 5]
6522 [x, y][z, y] = [xz, y] (property (D)) [6243:6516,5646] �

In the preceding proof, the justification i → j indicates equality substitution
between an instance of i and an instance of j, and the justification : i, j, . . .
indicates simplification with i, j, . . ..

The proof, found by Otter in several seconds, is in nearly the form output by
Otter, and there is much room for improvement of the presentation. Inferences
are frequently hard to follow, because the instances of the premises are not
given, simplification is applied, and variables are renamed. In addition, Otter
proofs are usually longer than necessary.

Otter can accept various forms and degrees of guidance from the user when
searching for a proof. For these proofs, we simply specified an ordering on the
symbols (which affects how derived identities are used as simplification rules)
and a limit on the complexity of derived identities.

Automated theorem proving has been very useful in testing other instances
of the CS conjecture [4], and we are using the resulting proofs to seek insights
into the relationships between CS proofs and the corresponding GT proofs.
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